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ABSTRACT: This article describes the design features and the first test measurements obtained 

during the installation of a novel high resolution 2D neutron detection technique. The technique 

proposed in this work consists of a boron layer (enriched in 
10

B) placed on a scientific Charge 

Coupled Device (CCD). After the nuclear reaction 
10

B(n,)
7
Li, the CCD detects the emitted 

charge particles thus obtaining information on the neutron absorption position. The above-

mentioned ionizing particles, with energies in the range 0.5–5.5 MeV, produce a plasma effect 

in the CCD which is recorded as a circular spot. This characteristic circular shape, as well as the 

relationship observed between the spot diameter and the charge collected, is used for the event 

recognition, allowing the discrimination of undesirable gamma events. We present the first 

results recently obtained with this technique, which has the potential to perform neutron 

tomography investigations with a spatial resolution better than that previously achieved. 

Numerical simulations indicate that the spatial resolution of this technique will be about 15 m, 

and the intrinsic detection efficiency for thermal neutrons will be about 3 %. We compare the 

proposed technique with other neutron detection techniques and analyze its advantages and 

disadvantages. 

KEYWORDS: Neutron imaging; Neutron detection; Charge Coupled Device, position sensitive 

neutron detection. 
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1. Introduction 

Since the neutron discovery by Chadwick in 1932 [1, 2], the neutron detection techniques 

have been refined, and over the past two decades have seen remarkable progress [3-5]. This 

progress has been mainly motivated by the great capability of neutron techniques to study the 

structure, dynamics, composition and magnetization of condensed matter, in combination with 

the development and construction of high intense neutron sources. These sources are, nuclear 

research reactor and spallation sources, big facilities mainly dedicated to the neutron production 

[6]. Other applications that motivated the development of the neutron detection techniques are 

the instrumentation required for the operation of nuclear reactors [3], and the detection of 

concealed substances in port containers [7-12]. Due to the present international context, during 

the last decade this last application has become of importance for homeland security. Neutron 

detectors based on the use of helium-3, widely used for research during the last 30 years, were 

installed in the US borders in order to prevent the illegal traffic of radioactive materials [13]. 

This new application of the helium-3 based neutron detection, as well as the tens of thousands of 

liters that are being used in large science facilities in the US, have produced a deficit in the 

availability of helium-3 for research called ´helium-3 crisis´ [14]. For the reasons mentioned 

above, the development of alternative neutron detection techniques based on the use of different 

materials is of great interest nowadays for neutron scattering science continuity.  

As thermal neutrons are not directly ionizing particles, some intermediate nuclear reaction 

is necessary in its detection process. One example widely used are the helium-3 proportional 

counters, in which the nuclear reaction is produced in the helium-3 used to filling the detector 

active volume. Other example of gas detectors are the proportional counters based on BF3, in 

which the nuclear reaction is produced in the 
10

B isotope. The mentioned alternative has two 

disadvantages: BF3 is very corrosive and extremely toxic. For these reasons, the BF3 detectors 

life-time is limited and its handling and storage must be strictly controlled [15]. 

In this context, during the last years different detection techniques were developed for 

position sensitive neutron detection. These techniques include those based on the use of different 

scintillator materials coupled to Wavelength-Shifting Fibres (WSFs) and Photo-Multiplier Tubes 

(PMTs) [16, 17], 
10

B-lined detectors coupled to Multi-Wire Proportional Chambers [18], straws 

tubes built with an inner coating of 
10

B4C and Multi-Grid Detectors [19, 20, 18], as well as those 

techniques that use Micro Chanel Plates (MCP) coupled to charge-coupled devices (CCD) [21-

24]. The advantages and disadvantages of the mentioned techniques are analyzed in reference 

[18]. In the case of the technique based on MCP devices, the neutron absorption is produced in 

the boron contained in the MCP structure. The charged particles emitted after the nuclear 

reaction produce electrons that are multiplied in the MCP channels. Then, the electron avalanche 

is detected by the CCD. With this technique the obtained spatial resolution is approximately 60 

micrometers, which is essentially given by the channel spacing [21-24].  

The CCD was invented in 1969 at AT&T Bell Labs by Willard Boyle and George E. Smith [25-26]. 

The essence of the design is the capability to transfer charge onto a semiconductor surface from one 

storage capacitor to the next. Scientific CCDs, originally developed for photon detection, have been 

extensively used in ground and space-based astronomy, X-ray imaging and other particle detection 

applications [27]. The combination of high detection efficiency, low noise, good spatial resolution, low 

dark current and high charge transfer efficiency results in an excellent performance for detection of 

ionizing particles [28]. 

 The purpose of this work is to introduce a novel neutron detection technique that employs the 

formerly mentioned CCD characteristics in combination with a proper material that, after a neutron 

induced nuclear reaction, emits charged particles that can be easily recorded by the CCD. The proposed 

technique is based on a scientific CCD cover with a boron layer.  
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The advances performed in its implementation and the obtained experimental results are shown together 

with numerical results that indicate that the proposed technique will be very useful, especially for those 

applications where high spatial resolution in the neutron detection position is required. Among these 

applications, it can be mentioned the neutron imaging formation in transmission experiments, technique 

of interest for visualisation of distributions of chemical elements in different materials [29], 

crystallographic phases and crystalline orientations [30], and several application in Material Science [31], 

Biology, Geology, etc. [29, 32-34].  

 

2. The CCD used 

Figure 1 shows the CCD used in this work. This CCD was developed for the DECam wide field 

imager that is currently under construction [35]. The CCD was built by the Lawrence Berkeley National 

Laboratory (LBNL) [36], and extensively characterized at Fermilab for the DECam project [37]. The 

CCD used in this work is 250 m thick, fully depleted, back-illuminated device fabricated on high-

resistivity silicon. It has 2k x 4k pixels of 15 m x 15 m each, resulting on an effective area of 

approximately 3 x 6 cm
2
. The CCD was placed inside a vacuum box, and cooled by using liquid nitrogen. 

The measurements were made with the CCD working at approximately 135 K to avoid any spurious 

generation of charge. At this temperature the dark current contribution is less than a 1e-/pixel/hour and 

has a negligible effect on the alpha detection [38]. 

 

 

Figure 1: (a) Pixel cross section of a 250 μm thick CCD developed at Lawrence 

Berkeley National Laboratory. (b) The electrostatic potential (V) generated 

through three gated phases is shown as function of depth (y axis) and one of the 

lateral directions (x axis). The generated charge is stored in the potential well. 

 

Figure 2 shows an image obtained by exposing the CCD active surface to different ionizing 

radiations. The recorded event shape can be used to identify the incident particle. 
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Figure 2: Events recorded with the CCD exposed to different ionizing radiations.  

The limited diffusion hits are the result of the interaction between the silicon and 

X-rays from a 
55

Fe source. 

 

The typical reading time of the charge cumulated in each pixel is about 3 s, thus producing a total 

reading time of about 24 seconds for each image. During the reading time, the device is still exposed to 

ionizing events, and therefore this period is considered as part of the total exposure time. It must be noted 

that the events recorded during the reading process can modify the obtained image.  

3. The proposed technique 

The technique proposed in this work consists of a boron layer enriched in 
10

B coating a scientific 

CCD. As Figure 3 shows, the object to be analysed is placed between the neutron source and the CCD, so 

some neutrons are absorbed or scattered by the object, while others can reach the boron layer. As depicted 

in Figure 4, after the nuclear reaction 
10

B(n,)
7
Li takes place, some of the emitted charged particles can 

leave the boron layer and be detected by the CCD. In the image recorded after the CCD readout it is 

possible to observe the transmitted neutron beam shape. The neutron detection active area is defined by of 

the CCD active dimensions. 

 

 

Figure 3: Experimental set up. The sample is placed in a collimated 

neutron beam.  
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Figure 4: A boron layer is placed on the surface of a CCD. The charged particles ( 

and 
7
Li) emitted in the boron nuclear reaction are detected in the CCD. 

4. Preliminary test with alpha particles 

In the proposed neutron imaging technique the alpha particles produced in the above mentioned 

nuclear reaction are directly detected by the CCD. As a preliminary test we expose the CCD to an 
241

Am 

 source (approximately 5.5 MeV). Figure 5 shows one of the obtained images. 

 

 

Figure 5:  Image obtained with the CCD exposed to a 
241

Am source. 

The alpha events are clearly recorded as spots of about 10 pixels diameter. The gamma events (with 

energies lower that 60 keV) are recorded as smaller spots and small tracks. Figure 6 shows the 

corresponding energy spectrum obtained by adding all the pixel charge of each event. It shows two 

different ranges in the energy of the detected particles, making a clear distinction between 5.5 

MeV alpha particles and photons with energies lower than 60 keV. 
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Figure 6: Energy measured by the CCD when exposed to a 
241

Am source. 

 

The detected alpha particle energy depends on the cluster size. Figure 7 shows the experimental 

measurements of the relationship between these magnitudes. The behavior observed in Figure 7 is mainly 

due to a plasma effect produced by the charged particles in the silicon bulk described in reference [39]. In 

the image processing, this relationship can be used to discriminate some events not produced by charged 

particles emitted by the boron layer. Another characteristic that can be used to validate one event during 

the image processing is the event symmetry. Muons and gamma rays normally produce non symmetric 

events; the second order momentum of the charge in the horizontal axis is different from that of the 

vertical axis.   

 

 

 
Figure 7: Energy dependence on the cluster size for alpha particles. Red points were obtained with the 

241
Am source, and black points with  particles coming from (n,) reactions. 

5. Experimental set up 

 For this preliminary test, boron was not directly placed on the silicon CCD surface, but on a 2 mm 

thick aluminium plate (5 x 5 cm
2
 size), shown in Figure 8. The 

10
B layer was deposited by electro-
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deposition, and its thickness (2.070.08 m) was measured by neutron transmission experiments in the 

thermal neutron energy range by using the 25 MeV Bariloche electron LINAC accelerator and the time-

of-flight method [40-41]. The boron surface was placed at approximately 1.1 mm from the CCD. 

 

 
Figure 8: Aluminium plate with a 

10
B layer on its surface.  

The borated face was placed near the CCD surface (less than 1 mm). 

 

In Figure 9 we show details of the CCD and its connections, as well the box where the CCD is 

placed and cooled. The CCD was fully depleted by using a 40V substrate voltage. 

 

 

                      (a)                                                           (b)          

          
Figure 9: (a) CCD placed in its dewar without the borated surface and without the dewar cover. 

(b) CCD dewar with its cover. 

 

For this preliminary test we use as a sample a 1 mm thick cadmium plate with a cross shape hole 

placed in contact with the aluminium plate inside the dewar. A picture of this object is shown in Figure 

10. It is 6.8 cm long and 4.1 cm wide.  

 

 
Figure 10: Cd plate with a cross and different holes, employed as a sample. 
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6. Results 

6.1 Experimental results 

The neutron image presented in Figure 11 was obtained by using a 100 mCi 
252

Cf neutron source 

placed at 10 cm from the CCD (outside the dewar), a 3.8 cm thick polyethylene slab as neutron 

moderator, and the experimental set-up described in the previous section. The exposure time was 400 

minutes, and the reading time 24 seconds. Figure 11 is presented in an inverted gray scale; the white 

background corresponds to regions without ionizing process. The black dots are due to alpha and lithium 

particles produced by nuclear reactions in the boron by those neutrons that are not absorbed in the 

cadmium plate. In Figure 11 it is possible to see several black dots inside the cross shape hole, as well as 

in other regions where the cadmium did not cover the boron (upper and lower sides of the image). 

Besides, some black dots are also observed in the area covered by the cadmium sheet. This is so because 

some epithermal neutrons can pass through the cadmium and be absorbed by the boron. In the area 

covered by the cadmium the observed dots density is significantly lower than that of the uncovered area. 

 

 
Figure 11: Neutron image obtained with this technique (central part). The background of this 

figure is a photo of the cadmium plate (zoom of Figure 9). For the neutron image an inverted 

gray scale was used. The regions where the CCD detects more alpha and lithium events are 

shown in black. 

 

6.2 Resolution and efficiency estimation by Monte Carlo simulations 

It is worth noticing that for this preliminary experiment the boron layer was deposited on an 

aluminum surface placed at about 1 mm from the silicon surface. The intrinsic detection efficiency of an 

ideal detection system, with the boron layer directly coating the CCD silicon surface, was estimated by 

means of Monte Carlo simulation by using the MCNP code. In order to validate the employed code, the 

energy spectrum of the alpha particles emitted by the boron layer in presence of thermal neutron is 

compared with that obtained from the simulation. The measurements were performed by using a silicon 

detector connected to a charge sensitive preamplifier. In Figure 12 the experimental pulse height spectrum 

is compared with that obtained from the Monte Carlo simulation. 
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Figure 12. Red: Experimental energy spectrum of the charged particles emitted by boron layer 

after the absorption of thermal neutrons. Black: Simulated energy spectrum taking only into account 

alpha particles. 

 

The employed MCNP version does not take into account the 
7
Li contribution. This is the reason for 

the difference observed in Figure 12 below 0.7 MeV. The simulation does not take into account a gold 

layer deposited on the silicon detector used for this measurements. This is the reason for the difference 

observed at about 1.5 MeV. 

In a real experiment by employing the technique introduced in this work, a lower level 

discrimination (LLD) must be selected according to the observed background level. The background level 

has three components: the CCD dark current noise, the electronic read-out noise, as well as the radiation 

file present at de detection position (commonly due to gamma rays). Only events with energy greater than 

LLD should be counted as neutrons. The detection efficiency is calculated as the area under the energy 

spectrum. For this reason, the optimum boron thickness depends on the LLD. For a very thin boron layer 

most of the neutrons are transmitted without interaction, and for a very thick one the  and 
7
Li do not 

reach the CCD. Figure 13 shows the optimum boron thickness, Topt, as a function of LLD obtained from 

the simulations without taking into account the 
7
Li contribution. Figure 14 shows detection efficiency for 

Topt as a function of LLD. 

 

Figure 13. Optimum boron thickness as a function of the lower level discrimination (LLD). 
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Figure 14. Neutron detection efficiency for the optimum boron thickness presented in Figure12. 

 

Finally, in order to estimate the spatial resolution of the proposed technique, we use the SRIM2011 

code to simulate the tracks of  particles in 
10

B and Si. We assume an incident beam of 1780 keV in the 

horizontal direction. The results are shown in Figure 15. 

 

 

 

Figure 15. Simulation of  tracks in 
10

B (left) and Si (right) by using the SRIM2011 code assuming 

an incident  beam of 1780 keV in the horizontal direction. 

 

We observed a mean  range of about 4.4 m in 
10

B, and 6.4 m in Si. It is worth noticing that the 

charged particles are emitted isotropically after the nuclear reaction, and that the CCD cannot detect the 

ion incident angle. Therefore, the ion ranges analysed above are useful to estimate this technique spatial 

resolution. From the maximum range formerly mentioned, it is possible to estimate that this technique 

spatial resolution will be approximately 15 m, similar to the CCD pixel spacing employed in this work.  

 

7. Conclusion 

The preliminary tests of the technique introduced in this work have been successful, and the first 

neutron images have been obtained. The unwanted events (gammas, X rays, muons, fast neutrons, etc.) 

can be mostly discriminated by analysing the energy events, as well as their distinctive trace on the CCD. 

Another characteristic that can be used to validate each recorded event as one neutron is the relationship 

existing between the event diameter and the charge collected shown in Figure 7. From simulations that do 

not take into account the 
7
Li contribution, assuming a thermal neutron beam with its axis normal to the 

CCD surface, the maximum neutron detection efficiency is about 1.6%. Including the 
7
Li contribution we 

estimate a total efficiency for thermal neutron of about 3% for a low background condition. The detection 

efficiency could be increased by placing the CCD surface in a different angle. In the mentioned 

configuration the neutron absorption probability increases without affecting the probability that the 
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charged particles escape from the boron layer. This device can be used for different neutron imaging 

applications, especially in those cases were high spatial resolution is required. In order to improve the 

spatial resolution the following step will be to place the boron layer directly on the CCD surface. From 

Monte Carlo simulations we have estimated a spatial resolution for this technique of about 15 m, which 

is better than the best spatial resolution of MCPs devices (approximately 65 m) [21-24]. For this reason, 

the proposed technique will be especially useful for those applications where high spatial resolution in the 

neutron detection position is required. One example is the neutron imaging formation in transmission 

experiments. Other examples are the beam alignment and the sample positioning in different kind of 

experiments, which could be performed by placing the detection system in the neutron beam. This 

technique has the advantage of not requiring an MCP device. In addition, the spatial resolution is 

practically independent of the angle between the incident neutron and the borated surface. Moreover, 

large active areas could be obtained at low cost. Preliminary experimental tests indicate that this 

technique could be also employed by using boron coating a CMOS device. CCD and CMOS devices with 

timing resolutions of about 1 s are used in neutron imaging applications [21-24] and are commercially 

available. The mentioned devices will also allow to use this technique in neutron time-of-flight 

measurements. Detection efficiencies for thermal neutrons greater than 3% could be reached by 

employing a multi layer arrange of boron-CCD or boron-CMOS devices. 

Acknowledgments 

We acknowledge Gregory Derylo, Kevin Kuk and Heman Caese for technical support at Fermilab (USA), 

and Marcelo Miller, Luis Capararo and Yamil Moreira for the borate aluminium plate preparation at 

CNEA (Argentina). This work was partially supported by ANPCyT (Argentina) under project PICT 

2011-0534 and by CONICET (Argentina) under the project PIP 2011-0552. 

 

References 

[1] J. Chadwick, Possible Existence of a Neutron, Nature 129, 312 (1932).  

[2] J. Chadwick, The Existence of a Neutron, Proceedings of the Royal Society of London A136, 692-

708 (1932). 

[3] G.F. Knoll, Radiation Detection and Measurement, J. Wiley & Sons (1979-89-2000). 

[4] New Developments in Radiation Detectors, Neutron News, 16(4) (2005) 13-21. 

[5] A.J. Peurrung, Recent developments in neutron detection, Nucl. Instrum. and Meth. A, Volume 443, 

Issues 2–3, 1 (2000), 400–415. 

[6] The ISIS Facility, Annual Report 2002–2013, ISSN 1358–6254. 

[7] T. Gozani, The Role of Neutron Based Inspection Techniques in the Post 9/11/01 Era, 

Nucl. Instr. Meth. B 213 (2004) 460-463. 

[8] L.J. Jones et al., Detection of Shielded Nuclear Material in a Cargo Container, Nucl. Instr. 

Meth. A 562(2), 01/2006, 1085-1088.  

[9] P. Kerr et al., Active Detection of Small Quantities of Shielded Highly-enriched Uranium 

Using Low-dose 60-keV Neutron Interrogation, Nucl. Instr. Meth. B 261 (2007) 347-350.  

[10] J.M. Hall et al., The Nuclear Car Wash: Neutron Interrogation of Cargo Containers to 

Detect Hidden SNM, Nucl. Instr. Meth. B 261 (2007) 337–340. 

[11] K.A. Jordan and T. Gozani, Pulsed Neutron Differential Die Away Analysis for Detection 

of Nuclear Materials, Nucl. Instr. Meth. B 261 (2007) 365-368. 



 

 

 
– 12 

– 

[12] A. Tartaglione, F. Di Lorenzo, R.E. Mayer, Detection of Thermal-Induced Prompt Fission 

Neutrons of Highly-Enriched Uranium: A Position Sensitive Technique, Nucl. Instr. and 

Meth. B 267 (2009) 2453-2456. 

[13] D. A. Shea and D. Morgan. The Helium-3 shortage: Supply, demand, and options for 

congress. Technical Report R41419, Congressional Research Service, 2010. 

[14] A. Cho. Helium-3 shortage could put freeze on low-temperature research. Science, 

326(5954), 2009. 

[15] T. Wilpert, Boron Triouride Detectors, Neutron News, 23(4), 2012. 

[16] N. G. Rhodes, Scintillation Detectors, Neutron News, 23(4), 2012. 

[17] T. Nakamura et al. A large-area two-dimensional scintillator detector with a wavelength-shifting 

fibre readout for a time-of-flight single-crystal neutron difractometer, Nucl. Instrum. and Methods 

A, 686(0), 2012. 

[18] 
10

B4C Multi-Grid as an alternative to 
3
He for Large Area Neutron Detectors, Correa Magdalena, 

Jonathan ; Guerard, B. (dir.) ; Campo Ruiz, J.J. (dir.), Universidad de Zaragoza, 

(http://zaguan.unizar.es/record/9939/files/TESIS-2013-009.pdf) 

[19] J.L. Lacy et al., Novel neutron detector for high rate imaging applications. In Nuclear Science 

Symposium Conference Record, 2002. IEEE, volume 1, 2002. 

[20] A. Athanasiades et al. Straw detector for high rate, high resolution neutron imaging. In Nuclear 

Science Symposium Conference Record, 2005. IEEE, volume 2, 2005. 

[21] A. S. Tremsin, J. V. Vallerga, J. B. McPhate, O. H. W. Siegmund, W. B. Feller, L. Crow, 

R. G. Cooper, On the possibility to image thermal and cold neutron with sub-15 m spatial 

resolution”, Nucl. Instr. and Meth. A 592 (2008) 374. 

[22] A. S. Tremsin, J. B. McPhate, J. V. Vallerga, O. H. W. Siegmund, J. S. Hull, W. B. Feller, 

E. Lehmann, High-resolution neutron radiography with microchannelplates: Proof-of-

principle experiments at PSI, Nuclear Instruments and Methods in Physics Research A, 

605 (2009) 103–106. 

[23] Anton S. Tremsin, , W. Bruce Feller, R. Gregory Downing, Efficiency optimization of 

microchannel plate (MCP) neutron imaging detectors. I. Square channels with 10B 

doping, Nuclear Instruments and Methods in Physics Research A 539 (2005) 278–311 

[24] A. S. Tremsin, J. B. McPhate, J. V. Vallerga, O. H. W. Siegmund, J. S. Hull, W. B. Feller, 

E. Lehmann, Detection efficiency, spatial and timing resolution of thermal and cold 

neutron counting MCP detectors, Nucl. Instr. and Meth. A 604 (2009) 140. 

[25] G.E. Smith, THE INVENTION AND EARLY HISTORY OF THE CCD, Nobel Lecture, 

December 8, 2009. 

[26] W.S. Boyle, CCD – AN EXTENSION OF MAN’S VISION, Nobel Lecture, December 8, 

2009.  

[27] J. Estrada, et al., Prospects for a Direct Dark Matter Search Using High Resistivity CCD 

Detectors, arXiv:0802.2872v3, 2008. 

[28] J.R. Janesick, Scientific Charge-Coupled Devices, SPIE Press, Bellingham,WA, 2001. 

[29] A.S. Tremsin et al., IEEE Transactions on Nuclear Science, 52, 1739 (2005). 



 

 

 
– 13 

– 

[30] W. Kockelmann, G. Frei, E.H. Lehmann, P Vontobel, J.R. Santisteban, Nucl. Instr. 

Meth. A578, 421 (2007). 

[31] N Kardjilov, E Lehmann, E Steichele, P Vontobel, Nucl. Instr. Meth A527, 519–530. 

[32] EH. Lehmann et al, Nucl. Instr. Meth. A603, 429 (2009). 

[33] E. H. Lehmann et al., Nuclear Instruments and Methods in Physics Research A 603 (2009) 

429-438.  

[34] W. Kockelmann et al., Nuclear Instruments and Methods in Physics Research A 578 (2007) 

241-234. 

[35] Dark Energy Survey Collaboration, The Dark Energy Survey, astro-ph/0510346, 2005. 

[36] S.E. Holland, D.E. Groom, N.P. Palaio, R.J. Stover, M. Wei, IEEE Transactions on 

Electron Devices ED-50 (2003) 225. 

[37] C. Abbott, et al., Ground-based andairborne instrumentation for astronomy, in: I.S. Mc 

Lean, M. Iye (Eds.), Proceedings of the SPIE, vol. 62 69, 2006. 

[38] H.T. Diehl, et al., Characterization of DECam focal plane detectors, In: Dorn, D.A., 

Holland, D. (eds.) High Energy, Optical and Infrared Detectors for Astronomy III, 

Proceedings of the SPIE, vol. 7021, p. 70217 (2008). 

[39] J. Estrada, J. Molina, J.J. Blostein, and G. Fernández, Plasma effect in silicon charge 

coupled devices (CCDs), Nuclear Instruments and Methods in Physics Research A 665 

(2011) 90–93. 

[40] Search for Anomalous Effects in H2O/D2O Mixtures by Neutron Total Cross Section 

Measurements, J.J. Blostein, J. Dawidowski, S.A. Ibáñez and J. R. Granada, Physical 

Review Letters, 90, 105302 (2003). 

[41] Total cross sections of benzene at 90 K and light water ice at 115 K, L. Torres, J.R. 

Granada, J.J. Blostein, Nucl. Instruments and Methods in Physics Research B, 251 304-

305, 2006. 

 


